Dust motion in the divertor sheath

Gian Luca Delzanno Xianzhu Tang

Los Alamos National Laboratory

Outline

- Motivation: ITER
- The physics of dust in fusion devices
- The divertor sheath
- Dust dynamics
- Conclusions

Existing tokamaks produce dust

- Presence of dust (UFOs) known for a long time
- Produced by plasma-material interaction, maintenance

- ullet Not an issue in short-pulse tokamaks: lower heat load $\,q_{ref}=1\,{
 m MW/m^2}$
- A problem in ITER-era: higher heat load $q_{ref} = 10 \, \mathrm{MW/m^2}$
 - hundreds kgs of dust estimated for ITER
- Safety issues:
 - Beryllium: toxicity, chemical reactivity
 - Carbon: tritium retention
 - Tungsten: radiotoxicity
- Operational issues:
 - PMI. Dust survivability. Non-local redeposition
 - Dust penetration. Plasma pollution, disruptions

divertor

Dust in the ITER-era

- ITER dust safety limits
- Based on engineering estrapolations
- Limit can be reached before manteinance

Table 1Safety and administrative limits for tritium and dust in vessel inventories taken into account in this study.

	Safety limits	Administrative limit
In vessel T inventory Global in vessel dust	1 kg 1 ton	700 g 670 kg
inventory Dust on hot surfaces	6 kg of C, 6 kg of W, 6 kg of Be If no C present, 11 kg for Be, and 230 kg for W*	No assessment available
	and 250 kg for W	

ITER Organisation has recently (2009) reduced this limit to 77 kg W.

What is the physics base to support these estrapolations?

Dust survivability is the focus: can we really have that many kgs?

Key questions for dust in fusion devices

- How is dust generated? We do not know!
 - 10-15% of eroded wall material
 - Size distribution and birth rate: micrometer dust?
 - Tungsten?

Sharpe et al. Fus. Eng.Des (2002)

- How is dust transported? Can dust survive?
 - Addressed in this talk
 - Conclusion: 1 MW/m² heat load qualitatively different relative to 10 MW/m²

What is the physics of dust transport?

Dust charging:

$$\frac{dQ_d}{dt} = I_i + I_e + I_{se} + I_{th}$$

Dust motion:

$$\frac{d\mathbf{r}}{dt} = \mathbf{V}_d$$

$$m_d \frac{d\mathbf{V}_d}{dt} = Q_d \mathbf{E} + \mathbf{F}_{id}$$

Dust grain heating:

$$m_d C_d \frac{dT_d}{dt} = q_e + q_i - q_{se} - q_{th} - q_{rad}$$

- Coupled with the background plasma model
- Currents, ion drag and heat fluxes modeled by the OML theory
- Standard model, also used by other groups:
 - DUSTT: Krasheninnikov and collaborators in the US
 - DTOKS: Coppins and collaborators in UK

Background plasma model: divertor sheath

- Focus on the divertor (larger heat load)
- The magnetized sheath: Chodura's picture (wall negatively charged)
 - Debye sheath, nonneutral, $\sim \lambda_D$
 - Chodura layer, quasineutral, ~ρ_i
 - Presheath, quasi-neutral

Dust motion in the sheath

Vertical: force balance, levitation, oscillation around equilibrium Poloidal and toroidal: unbalanced, strong acceleration

Tomita's poster yesterday

Poloidal injection impacts for survivability!

Bragisnkii modeling of the sheath

Magnetized limit, no stress-tensor, steady-state, 1D

$$\begin{split} &\frac{\partial n_e}{\partial t} + \nabla \cdot (n_e \mathbf{V}_e) = \nu_i n_e \\ &\frac{\partial}{\partial t} \left(m_e n_e \mathbf{V}_e \right) + \nabla \cdot \left(m_e n_e \mathbf{V}_e \mathbf{V}_e \right) = -\nabla \left(n_e T_e \right) - e n_e \left(-\nabla \phi + \mathbf{V}_e \times \mathbf{B} \right) + \mathbf{R} \\ &\frac{\partial}{\partial t} \left(\frac{3}{2} n_e T_e + n_e \frac{m_e \mathbf{V}_e^2}{2} \right) + \nabla \cdot \left(\mathbf{q}_e + \frac{5}{2} n_e T_e \mathbf{V}_e + n_e \frac{m_e \mathbf{V}_e^2}{2} \mathbf{V}_e \right) = Q_e + e n_e \nabla \phi \cdot \mathbf{V}_e + \mathbf{R} \cdot \mathbf{V}_e \\ &\frac{\partial n_i}{\partial t} + \nabla \cdot (n_i \mathbf{V}_i) = \nu_i n_e \\ &\frac{\partial}{\partial t} \left(m_i n_i \mathbf{V}_i \right) + \nabla \cdot \left(m_i n_i \mathbf{V}_i \mathbf{V}_i \right) = -\nabla \left(n_i T_i \right) + e n_i \left(-\nabla \phi + \mathbf{V}_i \times \mathbf{B} \right) - \mathbf{R} \\ &\frac{\partial}{\partial t} \left(\frac{3}{2} n_i T_i + n_i \frac{m_i \mathbf{V}_i^2}{2} \right) + \nabla \cdot \left(\mathbf{q}_i + \frac{5}{2} n_i T_i \mathbf{V}_i + n_i \frac{m_i \mathbf{V}_i^2}{2} \mathbf{V}_i \right) = Q_i - e n_i \nabla \phi \cdot \mathbf{V}_i - \mathbf{R} \cdot \mathbf{V}_i \\ &\nabla^2 \phi = \frac{e}{\varepsilon_0} \left(n_e - n_i \right) \end{split}$$

- Uniform, static population of neutrals
- Conservation of energy flux: $\nabla \cdot (\mathbf{q}_e + \mathbf{q}_e^{conv} + \mathbf{q}_i + \mathbf{q}_i^{conv}) = 0$
- Equations integrated from upstream to the wall
 - Upstream: zero particle flux, conductive heat flux

Braginskii sheath profiles

Dust must stay close to the wall to survive!

1 μm dust particle sheath dynamics in 1 MW/m²

- Carbon dust. Released at the wall with no injection velocity
- Bounces back and forth in the sheath-presheath

Tungsten dust qualitatively similar

1 μm dust particles can survive in 1 MW/m²

- The dust temperature does not reach melting conditions
- The radiative flux is key to cool the dust!

1 μm dust particles can survive in 1 MW/m²

Accelerated to high speed, travel long distances

Surface inhomogeneity can redirect it towards the core

(Krasheninnikov et al, PoP 04)

Toroidal transit distance

Poloidal transit distance

1 μm dust particle sheath dynamics in 10 MW/m²

- Tungsten dust (T_{melt} ≃3700 K)
- Shorter duration, fewer collisions with the wall before melting
- Dynamics: symmetry is broken by the equation of state

1 µm dust survivability drastically reduced in 10 MW/m²

- Dust reaches melting condition quickly!
- Thermionic emission induces heat flux collection spike

1 µm dust redeposits non-locally in 10 MW/m²

 Does not move much. Reduced probability to be redirected towards the core

Toroidal transit distance

Poloidal transit distance

Critical poloidal injection speed to transit divertor w/o melting: L/τ_{melt} ~370 m/s

Redeposits non-locally. Fixed plasma poloidal flow direction leads to mass migration

0.1 μm dust particles in 10 MW/m²: redeposits locally!

Poloidal transit distance

 $\begin{aligned} &F_{el} \sim & r_d \\ &F_{drag} \sim & r_d^{-2} \end{aligned}$

Critical poloidal injection speed to transit divertor w/o melting: L/τ_{melt} ~6500 m/s

10 µm dust particles in 10 MW/m²: can survive!

Poloidal transit distance

No need for poloidal injection speed

Conclusion

Dust size, injection speed and direction determine its fate Large vertical injection speed → destruction Large poloidal injection speed → increases survivability

	Small injection speed	Critical poloidal injection speed for survivability (L/τ _{melt})
Small particles: r _d ~0.1 µm	Redeposits locally	6500 m/s
Medium particles: r _d ~1 μm	Redeposits non-locally: mass migration	370 m/s
Large particles: r _d ~10 μm	Can survive: PMI loss	0 m/s

Needs to be complemented (i.e. generation rate vs dust size) by the material science perspective!

Can we use dust for something useful? Maybe

- Let's reconsider the previous results for 10 μm dust
- Dust can travel the divertor poloidally without melting

Trajectory of a dust grain injected with $v_x=1$ m/s

Dust divertor shield

Tang, Delzanno, J. Fus. En. (2010)

Sheath energy fluxes profiles

